Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
PLoS One ; 19(1): e0293731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241420

RESUMEN

Prevention of Clostridium difficile infection is challenging worldwide owing to its high morbidity and mortality rates. C. difficile is currently being classified as an urgent threat by the CDC. Devising a new therapeutic strategy become indispensable against C. difficile infection due to its high rates of reinfection and increasing antimicrobial resistance. The current study is based on core proteome data of C. difficile to identify promising vaccine and drug candidates. Immunoinformatics and vaccinomics approaches were employed to construct multi-epitope-based chimeric vaccine constructs from top-ranked T- and B-cell epitopes. The efficacy of the designed vaccine was assessed by immunological analysis, immune receptor binding potential and immune simulation analyses. Additionally, subtractive proteomics and druggability analyses prioritized several promising and alternative drug targets against C. difficile. These include FMN-dependent nitroreductase which was prioritized for pharmacophore-based virtual screening of druggable molecule databases to predict potent inhibitors. A MolPort-001-785-965 druggable molecule was found to exhibit significant binding affinity with the conserved residues of FMN-dependent nitroreductase. The experimental validation of the therapeutic targets prioritized in the current study may worthy to identify new strategies to combat the drug-resistant C. difficile infection.


Asunto(s)
Clostridioides difficile , Clostridioides difficile/metabolismo , Simulación del Acoplamiento Molecular , Epítopos de Linfocito B , Vacunas Bacterianas , Nitrorreductasas/metabolismo , Epítopos de Linfocito T , Biología Computacional , Vacunas de Subunidad
2.
J Infect Public Health ; 17(2): 271-282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134602

RESUMEN

BACKGROUND: Typhoid fever, caused by Salmonella enterica serovar Typhi, is a significant public health concern due to the escalating of antimicrobial resistance (AMR), with limited treatment options for extensively drug-resistant (XDR) S. Typhi strains pose a serious threat to disease management and control. This study aimed to investigate the genomic characteristics, epidemiology and AMR genes of XDR S. Typhi strains from typhoid fever patients in Pakistan. METHODOLOGY: We assessed 200 patients with enteric fever symptoms, confirming 65 S. Typhi cases through culturing and biochemical tests. Subsequent antimicrobial susceptibility testing revealed 40 cases of extensively drug-resistant (XDR) and 25 cases of multi-drug resistance (MDR). Thirteen XDR strains were selected for whole-genome sequencing, to analyze their sequence type, phylogenetics, resistance genes, pathogenicity islands, and plasmid sequences using variety of data analysis resources. Pangenome analysis was conducted for 140 XDR strains, including thirteen in-house and 127 strains reported from other regions of Pakistan, to assess their genetic diversity and functional annotation. RESULTS: MLST analysis classified all isolates as sequence type 1 (ST-1) with 4.3.1.1. P1 genotype characterization. Prophage and Salmonella Pathogenicity Island (SPI) analysis identified intact prophages and eight SPIs involved in Salmonella's invasion and replication within host cells. Genome data analysis revealed numerous AMR genes including dfrA7, sul1, qnrS1, TEM-1, Cat1, and CTX-M-15, and SNPs associated with antibiotics resistance. IncY, IncQ1, pMAC, and pAbTS2 plasmids, conferring antimicrobial resistance, were detected in a few XDR S. Typhi strains. Phylogenetic analysis inferred a close epidemiological linkage among XDR strains from different regions of Pakistan. Pangenome was noted closed among these strains and functional annotation highlighted genes related to metabolism and pathogenesis. CONCLUSION: This study revealed a uniform genotypic background among XDR S. Typhi strains in Pakistan, signifying a persistence transmission of a single, highly antibiotic-resistant clone. The closed pan-genome observed underscores limited genetic diversity and highlights the importance of genomic surveillance for combating drug-resistant typhoid infections.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Humanos , Salmonella typhi/genética , Fiebre Tifoidea/epidemiología , Tipificación de Secuencias Multilocus , Pakistán/epidemiología , Filogenia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
PLoS One ; 18(11): e0289773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37992050

RESUMEN

Shigella sonnei is a gram-negative bacterium and is the primary cause of shigellosis in advanced countries. An exceptional rise in the prevalence of the disease has been reported in Asia, the Middle East, and Latin America. To date, no preventive vaccine is available against S. sonnei infections. This pathogen has shown resistances towards both first- and second-line antibiotics. Therefore, an effective broad spectrum vaccine development against shigellosis is indispensable. In the present study, vaccinomics-aided immunoinformatics strategies were pursued to identify potential vaccine candidates from the S. sonnei whole proteome data. Pathogen essential proteins that are non-homologous to human and human gut microbiome proteome set, are feasible candidates for this purpose. Three antigenic outer membrane proteins were prioritized to predict lead epitopes based on reverse vaccinology approach. Multi-epitope-based chimeric vaccines was designed using lead B- and T-cell epitopes combined with suitable linker and adjuvant peptide sequences to enhance immune responses against the designed vaccine. The SS-MEVC construct was prioritized based on multiple physicochemical, immunological properties, and immune-receptors docking scores. Immune simulation analysis predicted strong immunogenic response capability of the designed vaccine construct. The Molecular dynamic simulations analysis ensured stable molecular interactions of lead vaccine construct with the host receptors. In silico restriction and cloning analysis predicted feasible cloning capability of the SS-MEVC construct within the E. coli expression system. The proposed vaccine construct is predicted to be more safe, effective and capable of inducing robust immune responses against S. sonnei infections and may be worthy of examination via in vitro/in vivo assays.


Asunto(s)
Disentería Bacilar , Shigella sonnei , Humanos , Shigella sonnei/genética , Disentería Bacilar/prevención & control , Disentería Bacilar/microbiología , Proteoma/metabolismo , Escherichia coli/metabolismo , Quimioinformática , Simulación del Acoplamiento Molecular , Vacunas Bacterianas , Vacunas de Subunidad , Epítopos de Linfocito T , Simulación de Dinámica Molecular , Biología Computacional , Epítopos de Linfocito B
4.
Front Immunol ; 14: 1259612, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781384

RESUMEN

Leishmania tropica is a vector-borne parasitic protozoa that is the leading cause of leishmaniasis throughout the global tropics and subtropics. L. tropica is a multidrug-resistant parasite with a diverse set of serological, biochemical, and genomic features. There are currently no particular vaccines available to combat leishmaniasis. The present study prioritized potential vaccine candidate proteins of L. tropica using subtractive proteomics and vaccinomics approaches. These vaccine candidate proteins were downstream analyzed to predict B- and T-cell epitopes based on high antigenicity, non-allergenic, and non-toxic characteristics. The top-ranked overlapping MHC-I, MHC-II, and linear B-cell epitopes were prioritized for model vaccine designing. The lead epitopes were linked together by suitable linker sequences to design multi-epitope constructs. Immunogenic adjuvant sequences were incorporated at the N-terminus of the model vaccine constructs to enhance their immunological potential. Among different combinations of constructs, four vaccine designs were selected based on their physicochemical and immunological features. The tertiary structure models of the designed vaccine constructs were predicted and verified. The molecular docking and molecular dynamic (MD) simulation analyses indicated that the vaccine design V1 demonstrated robust and stable molecular interactions with toll-like receptor 4 (TLR4). The top-ranked vaccine construct model-IV demonstrated significant expressive capability in the E. coli expression system during in-silico restriction cloning analysis. The results of the present study are intriguing; nevertheless, experimental bioassays are required to validate the efficacy of the predicted model chimeric vaccine.


Asunto(s)
Leishmania tropica , Vacunas , Simulación del Acoplamiento Molecular , Leishmania tropica/genética , Proteómica , Escherichia coli , Epítopos de Linfocito T
5.
Comput Biol Med ; 167: 107570, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37897960

RESUMEN

Knee osteoarthritis (OA) is a frequent musculoskeletal disorder that leads to physical disability in older adults. Manual OA assessment is performed via visual inspection, which is highly subjective as it suffers from moderate to high inter-observer variability. Many deep learning-based techniques have been proposed to address this issue. However, owing to the limited amount of labelled data, all existing solutions have limitations in terms of performance or the number of classes. This paper proposes a novel fully automatic Kellgren and Lawrence (KL) grade classification scheme in knee radiographs. We developed a semi-supervised multi-task learning-based approach that enables the exploitation of additional unlabelled data in an unsupervised as well as supervised manner. Specifically, we propose a dual-channel adversarial autoencoder, which is first trained in an unsupervised manner for reconstruction tasks only. To exploit the additional data in a supervised way, we propose a multi-task learning framework by introducing an auxiliary task. In particular, we use leg side identification as an auxiliary task, which allows the use of more datasets, e.g., CHECK dataset. The work demonstrates that the utilization of additional data can improve the primary task of KL-grade classification for which only limited labelled data is available. This semi-supervised learning essentially helps to improve the feature learning ability of our framework, which leads to improved performance for KL-grade classification. We rigorously evaluated our proposed model on the two largest publicly available datasets for various aspects, i.e., overall performance, the effect of additional unlabelled samples and auxiliary tasks, robustness analysis, and ablation study. The proposed model achieved the accuracy, precision, recall, and F1 score of 75.53%, 74.1%, 78.51%, and 75.34%, respectively. Furthermore, the experimental results show that the suggested model not only achieves state-of-the-art performance on two publicly available datasets but also exhibits remarkable robustness.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Anciano , Radiografía , Osteoartritis de la Rodilla/diagnóstico por imagen , Aprendizaje Automático Supervisado , Examen Físico
6.
Sci Rep ; 13(1): 14047, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640739

RESUMEN

Tumor-infiltrating lymphocytes, specialized immune cells, are considered an important biomarker in cancer analysis. Automated lymphocyte detection is challenging due to its heterogeneous morphology, variable distribution, and presence of artifacts. In this work, we propose a novel Boosted Channels Fusion-based CNN "BCF-Lym-Detector" for lymphocyte detection in multiple cancer histology images. The proposed network initially selects candidate lymphocytic regions at the tissue level and then detects lymphocytes at the cellular level. The proposed "BCF-Lym-Detector" generates diverse boosted channels by utilizing the feature learning capability of different CNN architectures. In this connection, a new adaptive fusion block is developed to combine and select the most relevant lymphocyte-specific features from the generated enriched feature space. Multi-level feature learning is used to retain lymphocytic spatial information and detect lymphocytes with variable appearances. The assessment of the proposed "BCF-Lym-Detector" show substantial improvement in terms of F-score (0.93 and 0.84 on LYSTO and NuClick, respectively), which suggests that the diverse feature extraction and dynamic feature selection enhanced the feature learning capacity of the proposed network. Moreover, the proposed technique's generalization on unseen test sets with a good recall (0.75) and F-score (0.73) shows its potential use for pathologists' assistance.


Asunto(s)
Linfocitos , Neoplasias , Humanos , Linfocitos Infiltrantes de Tumor , Neoplasias/diagnóstico , Artefactos , Biología
7.
PLoS One ; 18(7): e0287905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498862

RESUMEN

Dengue Virus (DENV) is a serious threat to human life worldwide and is one of the most dangerous vector-borne diseases, causing thousands of deaths annually. We constructed a comprehensive PPI map of DENV with its host Homo sapiens and performed various bioinformatics analyses. We found 1195 interactions between 858 human and 10 DENV proteins. Pathway enrichment analysis was performed on the two sets of gene products, and the top 5 human proteins with the maximum number of interactions with dengue viral proteins revealed noticeable results. The non-structural protein NS1 in DENV had the maximum number of interactions with the host protein, followed by NS5 and NS3. Among the human proteins, HBA1 and UBE2I were associated with 7 viral proteins, and 3 human proteins (CSNK2A1, RRP12, and HSP90AB1) were found to interact with 6 viral proteins. Pharmacophore-based virtual screening of millions of compounds in the public databases was performed to identify potential DENV-NS1 inhibitors. The lead compounds were selected based on RMSD values, docking scores, and strong binding affinities. The top ten hit compounds were subjected to ADME profiling which identified compounds C2 (MolPort-044-180-163) and C6 (MolPort-001-742-737) as lead inhibitors against DENV-NS1. Molecular dynamics trajectory analysis and intermolecular interactions between NS1 and the ligands displayed the molecular stability of the complexes in the cellular environment. The in-silico approaches used in this study could pave the way for the development of potential specie-specific drugs and help in eliminating deadly viral infections. Therefore, experimental and clinical assays are required to validate the results of this study.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Mapas de Interacción de Proteínas , Simulación de Dinámica Molecular , Proteínas Virales/metabolismo , Proteínas no Estructurales Virales/genética , Dengue/tratamiento farmacológico
8.
J Biomol Struct Dyn ; : 1-15, 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424185

RESUMEN

Monkeypox virus (MPXV) is an orthopoxvirus, causing zoonotic infections in humans with smallpox-like symptoms. The WHO reported MPXV cases in May 2022 and the outbreak caused significant morbidity threats to immunocompromised individuals and children. Currently, no clinically validated therapies are available against MPXV infections. The present study is based on immunoinformatics approaches to design mRNA-based novel vaccine models against MPXV. Three proteins were prioritized based on high antigenicity, low allergenicity, and toxicity values to predict T- and B-cell epitopes. Lead T- and B-cell epitopes were used to design vaccine constructs, linked with epitope-specific linkers and adjuvant to enhance immune responses. Additional sequences, including Kozak sequence, MITD sequence, tPA sequence, Goblin 5', 3' UTRs, and a poly(A) tail were added to design stable and highly immunogenic mRNA vaccine construct. High-quality structures were predicted by molecular modeling and 3D-structural validation of the vaccine construct. Population coverage and epitope-conservancy speculated broader protection of designed vaccine model against multiple MPXV infectious strains. MPXV-V4 was eventually prioritized based on its physicochemical and immunological parameters and docking scores. Molecular dynamics and immune simulations analyses predicted significant structural stability and binding affinity of the top-ranked vaccine model with immune receptors to elicit cellular and humoral immunogenic responses against the MPXV. The pursuance of experimental and clinical follow-up of these prioritized constructs may lay the groundwork to develop safe and effective vaccine against MPXV.Communicated by Ramaswamy H. Sarma.

9.
Sci Rep ; 13(1): 9087, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277554

RESUMEN

Diabetic retinopathy (DR) is a diabetes complication that can cause vision loss among patients due to damage to blood vessels in the retina. Early retinal screening can avoid the severe consequences of DR and enable timely treatment. Nowadays, researchers are trying to develop automated deep learning-based DR segmentation tools using retinal fundus images to help Ophthalmologists with DR screening and early diagnosis. However, recent studies are unable to design accurate models due to the unavailability of larger training data with consistent and fine-grained annotations. To address this problem, we propose a semi-supervised multitask learning approach that exploits widely available unlabelled data (i.e., Kaggle-EyePACS) to improve DR segmentation performance. The proposed model consists of novel multi-decoder architecture and involves both unsupervised and supervised learning phases. The model is trained for the unsupervised auxiliary task to effectively learn from additional unlabelled data and improve the performance of the primary task of DR segmentation. The proposed technique is rigorously evaluated on two publicly available datasets (i.e., FGADR and IDRiD) and results show that the proposed technique not only outperforms existing state-of-the-art techniques but also exhibits improved generalisation and robustness for cross-data evaluation.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Oftalmólogos , Humanos , Retinopatía Diabética/diagnóstico por imagen , Retina/diagnóstico por imagen , Fondo de Ojo , Aprendizaje Automático Supervisado
11.
Bioengineering (Basel) ; 10(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37106617

RESUMEN

Lumpy skin disease is a fatal emerging disease of cattle, which has started to gain extensive attention due to its rapid incursions across the globe. The disease epidemic causes economic loss and cattle morbidity. Currently, there are no specific treatments and safe vaccines against the lumpy skin disease virus (LSDV) to halt the spread of the disease. The current study uses genome-scan vaccinomics analyses to prioritize promiscuous vaccine candidate proteins of the LSDV. These proteins were subjected to top-ranked B- and T-cell epitope prediction based on their antigenicity, allergenicity, and toxicity values. The shortlisted epitopes were connected using appropriate linkers and adjuvant sequences to design multi-epitope vaccine constructs. Three vaccine constructs were prioritized based on their immunological and physicochemical properties. The model constructs were back-translated to nucleotide sequences and codons were optimized. The Kozak sequence with a start codon along with MITD, tPA, Goblin 5', 3' UTRs, and a poly(A) tail sequences were added to design a stable and highly immunogenic mRNA vaccine. Molecular docking followed by MD simulation analysis predicted significant binding affinity and stability of LSDV-V2 construct within bovine immune receptors and predicted it to be the top-ranked candidate to stimulate the humeral and cellular immunogenic responses. Furthermore, in silico restriction cloning predicted feasible gene expression of the LSDV-V2 construct in a bacterial expression vector. It could prove worthwhile to validate the predicted vaccine models experimentally and clinically against LSDV.

12.
Plants (Basel) ; 12(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904007

RESUMEN

Breast cancer (BC) is known to be the most common malignancy among women throughout the world. Plant-derived natural products have been recognized as a great source of anticancer drugs. In this study, the efficacy and anticancer potential of the methanolic extract of Monotheca buxifolia leaves using human breast cancer cells targeting WNT/ß-catenin signaling was evaluated. We used methanolic and other (chloroform, ethyl acetate, butanol, and aqueous) extracts to discover their potential cytotoxicity on breast cancer cells (MCF-7). Among these, the methanol showed significant activity in the inhibition of the proliferation of cancer cells because of the presence of bioactive compounds, including phenols and flavonoids, detected by a Fourier transform infrared spectrophotometer and by gas chromatography mass spectrometry. The cytotoxic effect of the plant extract on the MCF-7 cells was examined by MTT and acid phosphatase assays. Real-time PCR analysis was performed to measure the mRNA expression of WNT-3a and ß-catenin, along with Caspase-1,-3,-7, and -9 in MCF-7 cells. The IC50 value of the extract was found to be 232 µg/mL and 173 µg/mL in the MTT and acid phosphatase assays, respectively. Dose selection (100 and 300 µg/mL) was performed for real-time PCR, Annexin V/PI analysis, and Western blotting using Doxorubicin as a positive control. The extract at 100 µg/mL significantly upregulated caspases and downregulated the WNT-3a and ß-catenin gene in MCF-7 cells. Western blot analysis further confirmed the dysregulations of the WNT signaling component (*** p< 0.0001). The results showed an increase in the number of dead cells in methanolic extract-treated cells in the Annexin V/PI analysis. Our study concludes that M. buxifolia may serve as an effective anticancer mediator through gene modulation that targets WNT/ß-catenin signaling, and it can be further characterized using more powerful experimental and computational tools.

13.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904577

RESUMEN

Intelligent traffic management systems have become one of the main applications of Intelligent Transportation Systems (ITS). There is a growing interest in Reinforcement Learning (RL) based control methods in ITS applications such as autonomous driving and traffic management solutions. Deep learning helps in approximating substantially complex nonlinear functions from complicated data sets and tackling complex control issues. In this paper, we propose an approach based on Multi-Agent Reinforcement Learning (MARL) and smart routing to improve the flow of autonomous vehicles on road networks. We evaluate Multi-Agent Advantage Actor-Critic (MA2C) and Independent Advantage Actor-Critical (IA2C), recently suggested Multi-Agent Reinforcement Learning techniques with smart routing for traffic signal optimization to determine its potential. We investigate the framework offered by non-Markov decision processes, enabling a more in-depth understanding of the algorithms. We conduct a critical analysis to observe the robustness and effectiveness of the method. The method's efficacy and reliability are demonstrated by simulations using SUMO, a software modeling tool for traffic simulations. We used a road network that contains seven intersections. Our findings show that MA2C, when trained on pseudo-random vehicle flows, is a viable methodology that outperforms competing techniques.

14.
Microorganisms ; 11(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36677520

RESUMEN

Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic strategies against this parasite. In the present study, we utilized the recently available multidrug resistant L. tropica strain proteome data repository to identify alternative therapeutic drug targets based on comparative subtractive proteomic and druggability analyses. Additionally, small drug-like compounds were scanned against novel targets based on virtual screening and ADME profiling. The analysis unveiled 496 essential cellular proteins of L. tropica that were nonhomologous to the human proteome set. The druggability analyses prioritized nine parasite-specific druggable proteins essential for the parasite's basic cellular survival, growth, and virulence. These prioritized proteins were identified to have appropriate binding pockets to anchor small drug-like compounds. Among these, UDPase and PCNA were prioritized as the top-ranked druggable proteins. The pharmacophore-based virtual screening and ADME profiling predicted MolPort-000-730-162 and MolPort-020-232-354 as the top hit drug-like compounds from the Pharmit resource to inhibit L. tropica UDPase and PCNA, respectively. The alternative drug targets and drug-like molecules predicted in the current study lay the groundwork for developing novel antileishmanial therapies.

15.
Microscopy (Oxf) ; 72(1): 27-42, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36239597

RESUMEN

Tumor-infiltrating lymphocytes are specialized lymphocytes that can detect and kill cancerous cells. Their detection poses many challenges due to significant morphological variations, overlapping occurrence, artifact regions and high-class resemblance between clustered areas and artifacts. In this regard, a Lymphocyte Analysis Framework based on Deep Convolutional neural network (DC-Lym-AF) is proposed to analyze lymphocytes in immunohistochemistry images. The proposed framework comprises (i) pre-processing, (ii) screening phase, (iii) localization phase and (iv) post-processing. In the screening phase, a custom convolutional neural network architecture (lymphocyte dilated network) is developed to screen lymphocytic regions by performing a patch-level classification. This proposed architecture uses dilated convolutions and shortcut connections to capture multi-level variations and ensure reference-based learning. In contrast, the localization phase utilizes an attention-guided multi-scale lymphocyte detector to detect lymphocytes. The proposed detector extracts refined and multi-scale features by exploiting dilated convolutions, attention mechanism and feature pyramid network (FPN) using its custom attention-aware backbone. The proposed DC-Lym-AF shows exemplary performance on the NuClick dataset compared with the existing detection models, with an F-score and precision of 0.84 and 0.83, respectively. We verified the generalizability of our proposed framework by participating in a publically open LYON'19 challenge. Results in terms of detection rate (0.76) and F-score (0.73) suggest that the proposed DC-Lym-AF can effectively detect lymphocytes in immunohistochemistry-stained images collected from different laboratories. In addition, its promising generalization on several datasets implies that it can be turned into a medical diagnostic tool to investigate various histopathological problems. Graphical Abstract.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Linfocitos , Procesamiento de Imagen Asistido por Computador/métodos
16.
Biochem Genet ; 61(1): 69-86, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35727487

RESUMEN

Single-Nucleotide Polymorphisms (SNPs) are common genetic variations implicated in human diseases. The non-synonymous SNPs (nsSNPs) affect the proteins' structures and their molecular interactions with other interacting proteins during the accomplishment of biochemical processes. This ultimately causes proteins functional perturbation and disease phenotypes. The Insulin receptor substrate-2 (IRS-2) protein promotes glucose absorption and participates in the biological regulation of glucose metabolism and energy production. Several IRS-2 SNPs are reported in association with type 2 diabetes and obesity in human populations. However, there are no comprehensive reports about the protein structural consequences of these nsSNPs. Keeping in view the pathophysiological consequences of the IRS-2 nsSNPs, we designed the current study to understand their possible structural impact on coding protein. The prioritized list of the deleterious IRS-2 nsSNPs was acquired from multiple bioinformatics resources, including VEP (SIFT, PolyPhen, and Condel), PROVEAN, SNPs&GO, PMut, and SNAP2. The protein structure stability assessment of these nsSNPs was performed by MuPro and I-Mutant-3.0 servers via structural modeling approaches. The atomic-level structural and molecular dynamics (MD) impact of these nsSNPs were examined using GROMACS 2019.2 software package. The analyses initially predicted 8 high-risk nsSNPs located in the highly conserved regions of IRS-2. The MD simulation analysis eventually prioritized the N232Y, R218C, and R104H nsSNPs that predicted to significantly compromise the structure stability and may affect the biological function of IRS-2. These nsSNPs are predicted as high-risk candidates for diabetes and obesity. The validation of protein structural impact of these shortlisted nsSNPs may provide biochemical insight into the IRS-2-mediated type-2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polimorfismo de Nucleótido Simple , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Biología Computacional , Estabilidad Proteica
17.
Front Genet ; 13: 982527, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36579328

RESUMEN

Introduction: Viral hemorrhagic septicemia virus (VHSV) is the most lethal pathogen in aquaculture, infecting more than 140 fish species in marine, estuarine, and freshwater environments. Viral hemorrhagic septicemia virus is an enveloped RNA virus that belongs to the family Rhabdoviridae and the genus Novirhabdovirus. The current study is designed to infer the worldwide Viral hemorrhagic septicemia virus isolates' genetic diversity and evolutionary dynamics based on G-gene sequences. Methods: The complete G-gene sequences of viral hemorrhagic septicemia virus were retrieved from the public repositories with known timing and geography details. Pairwise statistical analysis was performed using Arlequin. The Bayesian model-based approach implemented in STRUCTURE software was used to investigate the population genetic structure, and the phylogenetic tree was constructed using MEGA X and IQ-TREE. The natural selection analysis was assessed using different statistical approaches, including IFEL, MEME, and SLAC. Results and Discussion: The global Viral hemorrhagic septicemia virus samples are stratified into five genetically distinct subpopulations. The STRUCTURE analysis unveiled spatial clustering of genotype Ia into two distinct clusters at K = 3. However, at K = 5, the genotype Ia samples, deposited from Denmark, showed temporal distribution into two groups. The analyses unveiled that the genotype Ia samples stratified into subpopulations possibly based on spatiotemporal distribution. Several viral hemorrhagic septicemia virus samples are characterized as genetically admixed or recombinant. In addition, differential or subpopulation cluster-specific natural selection signatures were identified across the G-gene codon sites among the viral hemorrhagic septicemia virus isolates. Evidence of low recombination events elucidates that genetic mutations and positive selection events have possibly driven the observed genetic stratification of viral hemorrhagic septicemia virus samples.

18.
Pathogens ; 11(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36422613

RESUMEN

Clinical epidemiological studies have reported that viral infections cause autoimmune pathology in humans. Host-pathogen protein sequences and structure-based molecular mimicry cause autoreactive T cells to cross-activate. The aim of the current study was to implement immunoinformatics approaches to infer sequence- and structure-based molecular mimicry between viral and human proteomic datasets. The protein sequences of all the so far known human-infecting viruses were obtained from the VIPR database, and complete human proteome data were retrieved from the NCBI repository. Based on a predefined, stringent threshold of comparative sequence analyses, 24 viral proteins were identified with significant sequence similarity to human proteins. PathDIP identified the enrichment of these homologous proteins in nine metabolic pathways with a p-value < 0.0001. Several viral and human mimic epitopes from these homologous proteins were predicted as strong binders of human HLA alleles, with IC50 < 50 nM. Downstream molecular docking analyses identified that lead virus-human homologous epitopes feasibly interact with HLA and TLR4 types of immune receptors. The vast majority of these top-hit homolog epitopic peptides belong to the herpes simplex and poxvirus families. These lead epitope biological sequences and 3D structural-based molecular mimicry may be promising for interpreting herpes simplex virus and poxvirus infection-mediated autoimmune disorders in humans.

19.
BMC Infect Dis ; 22(1): 807, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36310166

RESUMEN

BACKGROUND: Plasmodium vivax apical membrane antigen-1 (pvama-1) is an important vaccine candidate against Malaria. The genetic composition assessment of pvama-1 from wide-range geography is vital to plan the antigen based vaccine designing against Malaria. METHODS: The blood samples were collected from 84 P. vivax positive malaria patients from different districts of Khyber Pakhtunkhwa (KP) province of Pakistan. The highly polymorphic and immunogenic domain-I (DI) region of pvama-1 was PCR amplified and DNA sequenced. The QC based sequences raw data filtration was done using DNASTAR package. The downstream population genetic analyses were performed using MEGA4, DnaSP, Arlequin v3.5 and Network.5 resources. RESULTS: The analyses unveiled total 57 haplotypes of pvama-1 (DI) in KP samples with majorly prevalent H-14 and H-5 haplotypes. Pairwise comparative population genetics analyses identified limited to moderate genetic distinctions among the samples collected from different districts of KP, Pakistan. In context of worldwide available data, the KP samples depicted major genetic differentiation against the Korean samples with Fst = 0.40915 (P-value = 0.0001), while least distinction was observed against Indian and Iranian samples. The statistically significant negative values of Fu and Li's D* and F* tests indicate the evidence of population expansion and directional positive selection signature. The slow LD decay across the nucleotide distance in KP isolates indicates low nucleotide diversity. In context of reference pvama-1 sequence, the KP samples were identified to have 09 novel non-synonymous single nucleotide polymorphisms (nsSNPs), including several trimorphic and tetramorphic substitutions. Few of these nsSNPs are mapped within the B-cell predicted epitopic motifs of the pvama-1, and possibly modulate the immune response mechanism. CONCLUSION: Low genetic differentiation was observed across the pvama-1 DI among the P. vivax isolates acquired from widespread regions of KP province of Pakistan. The information may implicate in future vaccine designing strategies based on antigenic features of pvama-1.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Humanos , Plasmodium vivax/genética , Irán , Pakistán/epidemiología , ADN Protozoario/genética , Antígenos de Protozoos/genética , Proteínas Protozoarias/genética , Malaria Vivax/epidemiología , Genética de Población , Variación Genética , Nucleótidos , Selección Genética , Análisis de Secuencia de ADN
20.
Sci Rep ; 12(1): 15498, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109570

RESUMEN

Interaction between devices, people, and the Internet has given birth to a new digital communication model, the internet of things (IoT). The integration of smart devices to constitute a network introduces many security challenges. These connected devices have created a security blind spot, where cybercriminals can easily launch attacks to compromise the devices using malware proliferation techniques. Therefore, malware detection is a lifeline for securing IoT devices against cyberattacks. This study addresses the challenge of malware detection in IoT devices by proposing a new CNN-based IoT malware detection architecture (iMDA). The proposed iMDA is modular in design that incorporates multiple feature learning schemes in blocks including (1) edge exploration and smoothing, (2) multi-path dilated convolutional operations, and (3) channel squeezing and boosting in CNN to learn a diverse set of features. The local structural variations within malware classes are learned by Edge and smoothing operations implemented in the split-transform-merge (STM) block. The multi-path dilated convolutional operation is used to recognize the global structure of malware patterns. At the same time, channel squeezing and merging helped to regulate complexity and get diverse feature maps. The performance of the proposed iMDA is evaluated on a benchmark IoT dataset and compared with several state-of-the CNN architectures. The proposed iMDA shows promising malware detection capacity by achieving accuracy: 97.93%, F1-Score: 0.9394, precision: 0.9864, MCC: 0. 8796, recall: 0.8873, AUC-PR: 0.9689 and AUC-ROC: 0.9938. The strong discrimination capacity suggests that iMDA may be extended for the android-based malware detection and IoT Elf files compositely in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...